A Useful Approximation to $e^{-r \text { a }}$

By Richard Bellman, B. G. Kashef and R. Vasudevan*

Abstract

Using differential approximation, we obtain a remarkably accurate representation of $e^{-t^{2}}$ as a sum of three exponentials.

1. Introduction. The function $e^{-t^{2}}$ occurs in many important contexts in mathematics. In some of these, it is quite useful to replace it by an approximation of some type, such as, for example, a Padé approximation. In this note, we wish to exhibit a surprisingly good approximation as a sum of three exponentials. This is obtained using differential approximation, [1]. The approximation obtained here holds for $0 \leqq t \leqq 1$.
2. Differential Approximation. Given a function $k(t)$ for $0 \leqq t \leqq T$, we determine the coefficients $a_{1}, a_{2}, \cdots, a_{N}$ which minimize the quadratic expression

$$
\begin{equation*}
J\left(a_{i}\right)=\int_{0}^{T}\left[k^{(N)}+\sum_{i=1}^{N} a_{i} k^{(N-i)}\right]^{2} d t \tag{2.1}
\end{equation*}
$$

where $k^{(i)}$ denotes the i th derivative. We then expect that the solution of the linear differential equation

$$
\begin{equation*}
u^{(N)}+a_{1} u^{(N-1)}+\cdots+a_{N} u=0 \tag{2.2}
\end{equation*}
$$

with suitable boundary conditions, will yield an approximation to $k(t)$. This is a question in stability theory.

The procedure is most useful when N can be taken small. In this case, $N=3$ and 5 yield excellent results for $k(t)=e^{-t^{2}}$, as is demonstrated below.
3. Numerical Results. It turns out that good results are obtained by choosing as initial conditions in (2.2): $u^{(i)}(0)=k^{(i)}(0), i=0,1, \cdots, N-1$. The coefficients a_{i} are listed in the first column of Table 1.

For the case $N=3$, the calculated values of $u, u^{\prime}, u^{\prime \prime}, \cdots$ agree to eight figures with the exact values $k, k^{\prime}, k^{\prime \prime}, \cdots$, respectively. The accuracy is even better for $N=5$.

If we express the solution of the linear differential equation as a sum of exponentials, we obtain the expression

$$
\begin{equation*}
u(t)=\sum_{i=1}^{N} b_{i} \exp \left(-\lambda_{i} t\right) \tag{3.1}
\end{equation*}
$$

Received May 3, 1971.
AMS 1969 subject classifications. Primary 6520, 6525.
Key words and phrases. Approximation.

* Supported by the National Science Foundation under Grant No. GP 29049 and the Atomic Energy Commission, Division of Research, under Contract No. AT(04-3),113, Project 19.

Copyright © 1972, American Mathematical Society
where b_{i} and λ_{i} can have complex values. These values are calculated and listed in Table 1. The numerical values of function $u(t)$ of the above equation at different time intervals ($0 \leqq t \leqq 1$) are listed in Table 2. In the same table, the absolute errors are also shown.

Table 1

N	a_{i}	b_{i}	λ_{i}
3	2.7403	.7853	.9180
	7.9511	$.1074+i .1963$	$.9111+i 2.334$
	5.7636	$.1074-i .1963$	$.9111-i 2.334$
5	4.7471	.6509	.9509
	27.9415	$.1795+i .2204$	$.9503+i 1.866$
	62.5129	$.1795-i .2204$	$.9503-i 1.866$
	109.1101	$-.0049+i .0163$	$.9478+i 3.930$
	68.1498	$-.0049-i .0163$	$.9478-i 3.930$

Table 2

	$N=3$			$N=5$	
Time	Calculated Value	Absolute Error		Calculated Value	Absolute Error
.1	.990020	$.30 \times 10^{-4}$.990049	$.4 \times 10^{-8}$
.3	.913676	$.255 \times 10^{-3}$.913931	$.2 \times 10^{-6}$
.5	.778679	$.122 \times 10^{-3}$.778800	$.2 \times 10^{-7}$
.8	.527665	$.372 \times 10^{-3}$.527292	$.2 \times 10^{-6}$
1.0	.367951	$.72 \times 10^{-4}$.367879	$.2 \times 10^{-6}$

4. Discussion. If desired, we can improve the accuracy of the approximation by taking the values of $u^{(i)}(0)$, the initial conditions, as parameters, $u^{(i)}(0)=c_{i}$ and then, by determining these values by the minimization of the quadratic expression,

$$
\begin{equation*}
J\left(c_{i}\right)=\int_{0}^{T}\left[k(t)-\sum_{i=1}^{N} c_{i} u_{i}\right]^{2} d t \tag{4.1}
\end{equation*}
$$

where u_{1}, \cdots, u_{N} are N linearly independent solutions of (2.2).
The integrals which arise are evaluated by using the differential equation (2.2) plus the auxiliary equations

$$
\begin{equation*}
\frac{d v_{i j}}{d t}=u_{i} u_{i}, \quad v_{i j}(0)=0, \quad \frac{d w_{i}}{d t}=u_{i} k, \quad w_{i}(0)=0 \tag{4.2}
\end{equation*}
$$

Then,

$$
\begin{equation*}
v_{i j}(T)=\int_{0}^{T} u_{i} u_{i} d t, \quad w_{i}(T)=\int_{0}^{T} u_{i} k d t \tag{4.3}
\end{equation*}
$$

The same technique can often be used in the determination of the coefficients a_{i}
when the function $k(t)$ satisfies a differential equation, linear or nonlinear. In this case, $k^{\prime}=-t^{2} k, k(0)=1$.

Department of Electrical Engineering
University of Southern California
Los Angeles, California 90007

1. R. Bellman, Methods of Nonlinear Analysis. Vol. 1, Math. in Sci. and Engineering, vol. 61-I, Academic Press, New York, 1970. MR 40 \#7508.
