A Useful Approximation to e⁻ⁱ

By Richard Bellman, B. G. Kashef and R. Vasudevan*

Abstract. Using differential approximation, we obtain a remarkably accurate representation of e^{-t^2} as a sum of three exponentials.

1. Introduction. The function e^{-t^*} occurs in many important contexts in mathematics. In some of these, it is quite useful to replace it by an approximation of some type, such as, for example, a Padé approximation. In this note, we wish to exhibit a surprisingly good approximation as a sum of three exponentials. This is obtained using differential approximation, [1]. The approximation obtained here holds for $0 \le t \le 1$.

2. Differential Approximation. Given a function k(t) for $0 \le t \le T$, we determine the coefficients a_1, a_2, \dots, a_N which minimize the quadratic expression

(2.1)
$$J(a_i) = \int_0^T \left[k^{(N)} + \sum_{i=1}^N a_i k^{(N-i)} \right]^2 dt,$$

where $k^{(i)}$ denotes the *i*th derivative. We then expect that the solution of the linear differential equation

(2.2)
$$u^{(N)} + a_1 u^{(N-1)} + \cdots + a_N u = 0,$$

with suitable boundary conditions, will yield an approximation to k(t). This is a question in stability theory.

The procedure is most useful when N can be taken small. In this case, N = 3 and 5 yield excellent results for $k(t) = e^{-t^2}$, as is demonstrated below.

3. Numerical Results. It turns out that good results are obtained by choosing as initial conditions in (2.2): $u^{(i)}(0) = k^{(i)}(0)$, $i = 0, 1, \dots, N-1$. The coefficients a_i are listed in the first column of Table 1.

For the case N = 3, the calculated values of u, u', u'', \cdots agree to eight figures with the exact values k, k', k'', \cdots , respectively. The accuracy is even better for N = 5.

If we express the solution of the linear differential equation as a sum of exponentials, we obtain the expression

(3.1)
$$u(t) = \sum_{i=1}^{N} b_i \exp(-\lambda_i t),$$

Key words and phrases. Approximation.

Copyright © 1972, American Mathematical Society

Received May 3, 1971.

AMS 1969 subject classifications. Primary 6520, 6525.

^{*} Supported by the National Science Foundation under Grant No. GP 29049 and the Atomic Energy Commission, Division of Research, under Contract No. AT(04-3),113, Project 19.

where b_i and λ_i can have complex values. These values are calculated and listed in Table 1. The numerical values of function u(t) of the above equation at different time intervals ($0 \le t \le 1$) are listed in Table 2. In the same table, the absolute errors are also shown.

T 1

		IABLE	1		
N	a,	b,		λι	
	2.7403	.7853	.9	80	
3	7.9511	.1074 + <i>i</i>	.1963 .91	11 + i 2.334	
	5.7636	.1074 — i	.1963 .91	11 — <i>i</i> 2.334	
	4.7471	.6509	.95	.9509	
	27.9415	.1795 + <i>i</i>	.2204 .95	503 + i 1.866	
5	62.5129	.1795 — <i>i</i>	.2204 .95	.9503 - i 1.866	
	109.1101	0049 + i	.0163 .94	78 + <i>i</i> 3.930	
	68.1498	0049 - i	.0163 .94	78 — <i>i</i> 3.930	
			2		
	N = 3		N = 5		
Time	Calculated Value	Absolute Error	Calculated Value	Absolute Error	
.1	.990020	$.30 \times 10^{-4}$.990049	$.4 \times 10^{-8}$	
.3	.913676	$.255 \times 10^{-3}$.913931	$.2 \times 10^{-6}$	
.5	.778679	$.122 \times 10^{-3}$.778800	$.2 \times 10^{-7}$	

4. Discussion. If desired, we can improve the accuracy of the approximation by taking the values of $u^{(i)}(0)$, the initial conditions, as parameters, $u^{(i)}(0) = c_i$ and then, by determining these values by the minimization of the quadratic expression,

.527292

.367879

 $.2 \times 10^{-6}$

 $.2 \times 10^{-6}$

 $.372 \times 10^{-3}$

 $.72 \times 10^{-4}$

(4.1)
$$J(c_i) = \int_0^T \left[k(t) - \sum_{i=1}^N c_i u_i \right]^2 dt,$$

where u_1, \dots, u_N are N linearly independent solutions of (2.2).

The integrals which arise are evaluated by using the differential equation (2.2) plus the auxiliary equations

(4.2)
$$\frac{dv_{ij}}{dt} = u_i u_j, \quad v_{ij}(0) = 0, \qquad \frac{dw_j}{dt} = u_j k, \quad w_j(0) = 0.$$

Then,

.8

1.0

.527665

.367951

(4.3)
$$v_{ij}(T) = \int_0^T u_i u_j dt, \quad w_i(T) = \int_0^T u_j k dt.$$

The same technique can often be used in the determination of the coefficients a_i

when the function k(t) satisfies a differential equation, linear or nonlinear. In this case, $k' = -t^2k$, k(0) = 1.

Department of Electrical Engineering University of Southern California Los Angeles, California 90007

1. R. BELLMAN, Methods of Nonlinear Analysis. Vol. 1, Math. in Sci. and Engineering, vol. 61-I, Academic Press, New York, 1970. MR 40 #7508.